
Algorithmic and advanced

Programming in Python

Eric Benhamou eric.benhamou@dauphine.eu

Remy Belmonte remy.belmonte@dauphine.eu

Masterclass 8
1

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Outline
1. Introduction to Ensemble

2. Bagging

3. Boosting

4. Discussion around XGBoost and LightGBM

2

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Reminder of the objective of this course
• People often learn about data structures out of context
• But in this course you will learn foundational concepts by building a real

application with python and Flask

• To learn the ins and outs of the essential data structure, experiencing in
practice has proved to be a much more powerful way to learn data
structures

3

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Reminder of previous session
In Master class 7, we discuss about graph traversal
Question: can you summarize the various algorithms seen?

4

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Three major sections for classification

• We can divide the large variety of classification
approaches into roughly three major types

1. Discriminative
directly estimate a decision rule/boundary
e.g., support vector machine, decision tree, logistic regression,
e.g. neural networks (NN), deep NN

2. Generative:
build a generative statistical model
e.g., Bayesian networks, Naïve Bayes
classifier

3. Instance based classifiers
- Use observation directly (no models)
- e.g. K nearest neighbors

5

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Ensemble methods principle
In statistics and machine learning, ensemble methods use
- multiple learning algorithms
- to obtain better predictive performance than could be obtained from

any of the constituent learning algorithms alone.

Its core principle: Together is better than alone as the majority vote cannot
go wrong. Averaging over multiple experts should give a better answer!

6

https://en.wikipedia.org/wiki/Statistics
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Predictive_inference

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Three major sections for classification

• We can divide the large variety of classification
approaches into roughly three major types

1. Discriminative
directly estimate a decision rule/boundary
e.g., support vector machine, decision tree, logistic regression,
e.g. neural networks (NN), deep NN

2. Generative:
build a generative statistical model
e.g., Bayesian networks, Naïve Bayes classifier

3. Instance based classifiers
- Use observation directly (no models)
- e.g. K nearest neighbors

7

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Ensemble Core principles

• Framework of Ensemble:

– 1. Get a set of classifiers 𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3 𝑥 , ……

They should be diverse.

– 2. Aggregate the classifiers (properly)

How to have different training data sets
• Re-sampling your training data to form a new set

• Re-weighting your training data to form a new set

8

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

The different type of Ensemble methods

• Bagging

• Bagged Decision Tree

• Random forests:

• Boosting

• Adaboost

• Xgboost

• Stacking

9

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Bagging

• Bagging or bootstrap aggregation

• a technique for reducing the variance of an
estimated prediction function.

• For instance, for classification, a committee
of decision trees

• Each tree casts a vote for the predicted class.

10

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Bootstrap

The basic idea:

randomly draw datasets with replacement (i.e. allows duplicates)
from the training data, each samples the same size as the original
training set

11

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

With Replacement

• Bootstrap with replacement can keep the
sampling size the same as the original size for
every repeated sampling. The sampled data
groups are independent on each other.

12

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Or Without Replacement

• Bootstrap without replacement cannot keep the
sampling size the same as the original size for
every repeated sampling. The sampled data
groups are dependent on each other.

13

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Bagging with simple graphs
N

ex
am

p
le

s

..
..

…
N

Create bootstrap samples
from the training data

p features

14

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Bagging of DT Classifiers
N

ex
am

p
le

s

..
..

…

..
..

…

p

e.g.

Take the
majority

vote

i.e. Refit the model to
each bootstrap
dataset, and then
examine the behavior
over the B
replications.

15

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

E.g., Predict by Hard voting

base

16

Algorithmic and advanced Programming in Python

Decision Boundary Comparison

17

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Peculiarities of Bagging

• Model Instability is good when bagging

– The more variable (unstable) the basic model is, the more
improvement can potentially be obtained

– Low-Variability methods (e.g. LDA) improve less than High-
Variability methods (e.g. decision trees)

18

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Bias-Variance Tradeoff / Model Selection

underfit region
overfit region

Large Bias

Small Variance
Small Bias Large
Variance

19

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

A complex model
have large variance.

We can average
complex models to
reduce variance.

If we average all the 𝑓i,
is it close to 𝑓∗

𝐸 𝑓" = 𝑓∗

𝑓2 𝑥 , 𝑓3 𝑥 , …… 𝑓𝐵 𝑥

20

Algorithmic and advanced Programming in Python

𝑓1 𝑥 ,classifiers

In details

Algorithmic and advanced Programming in Python

Base classifiers 𝑓1 𝑥 , 𝑓$ 𝑥 , 𝑓3 𝑥 , …… 𝑓𝐵 𝑥

𝑉𝑎𝑟(𝑓)) = 𝐸((𝑓) − 𝑓$
1

𝐵

1

𝐵
̅ 2) = 𝑉𝑎𝑟(2 𝑓)𝑖) = 2 2
𝑉𝑎𝑟 𝑓)𝑖

EXTRA

21

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Bagging : an extreme case study using

simulated data (with correlated features)
N = 300 training samples,

Y: Two classes and X: p = 5 features,

Each feature N(0, 1) distribution and pairwise correlation .95

Response Y: generated according to:

Test sample size of 2000

Fit classification trees to training set and bootstrap samples

B = 200

22

Algorithmic and advanced Programming in Python

Notice the
bootstrap
trees look
quite
different
from the
original tree

Five features highly correlated
with each other

➔ No clear difference with
picking up which feature to
split

➔ Small
changes in the
training set will result
in different tree

➔ But these trees are
actually quite similar wrt
output classification

23

Consensus: Majority vote

Probability: Average distribution at terminal nodes

B

For B>30, more trees do not improve the bagging results

➔ Since the trees
correlate highly to
each other and give
similar classifications

24Algorithmic and advanced Programming in Python

Bagging

• Slightly increases model complexity
– Cannot help when greater enlargement of

model diversity is needed

• Bagged trees are correlated
– Use random forest to reduce correlation

between trees

25Algorithmic and advanced Programming in Python

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Bagged Decision Tree

Greedy like Decision Tree
(e.g. GINI)

Split with Purity measure /
e.g. IG / cross-entropy / Gini
/

Multiple Tree Model
(s), i.e. space partition

Task

Representation

Score Function

Search/Optimization

Models,
Parameters

Classification / Regression

multiple (almost) full
decision trees /
bootstrap samples

Data
Tabular

26

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Let us discuss random forest

27

• Bagging

• Bagged Decision Tree

• Random forests

• Boosting

• Adaboost

• Xgboost

• Stacking

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Random forest classifier

• Random forest classifier,

– an extension to bagging

– which uses de-correlated trees.

28

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Random Forest Classifier
N

ex
am

p
le

s

..
..

…

Create bootstrap samples
from the training data

p features

29

Random Forest Classifier
N

ex
am

p
le

s

..
..

…

p features

At each node when choosing the split feature
choose only among m<p features

30Algorithmic and advanced Programming in Python

Random Forest Classifier
Create decision tree

from each bootstrap sample

N
ex

am
p

le
s

..
..

…

..
..

…

p features

31Algorithmic and advanced Programming in Python

Random Forest Classifier
N

ex
am

p
le

s

..
..

…

..
..

…

Take he
majority

vote

p features

32Algorithmic and advanced Programming in Python

Random Forests

For each of our B bootstrap samples

Form a tree in the following manner

i: Given p dimensions, pick m of them

ii: Split only according to these m dimensions
(we will NOT consider the other p-m dimensions)

Repeat the above steps i & ii for each split

Note: we pick a different set of m dimensions for each split
on a single tree

33Algorithmic and advanced Programming in Python

Page 598-599 In ESL book
34Algorithmic and advanced Programming in Python

Random Forests

Random forest can be viewed as a refinement of bagging with a
tweak of decorrelating the trees:

At each tree split, a random subset of m features out of all p
features is drawn to be considered for splitting

Some guidelines provided by Breiman, but be careful to choose
m based on specific problem:

m = p amounts to bagging

m = p/3 or log2(p) for regression

m = sqrt(p) for classification

35Algorithmic and advanced Programming in Python

Why correlated trees are not ideal ?

Random Forests try to reduce correlation
between the trees.

Why?

36Algorithmic and advanced Programming in Python

Why correlated trees are not ideal ?

Assuming each tree has variance σ2

If trees are independently identically
distributed, then average variance is σ2/B

37Algorithmic and advanced Programming in Python

A complex model will
have large variance.

We can average
complex models to
reduce variance.

If we average all the 𝑓i,
is it close to 𝑓∗

𝐸 𝑓" = 𝑓∗

classifiers 𝑓1 𝑥 , 𝑓$ 𝑥 , 𝑓3 𝑥 , …… 𝑓𝐵 𝑥

𝑉𝑎𝑟(𝑓)) = 𝐸((𝑓)− 𝑓$
1

𝐵

1

𝐵
̅ 2) = 𝑉𝑎𝑟(2 𝑓)𝑖) = 2 2
𝑉𝑎𝑟 𝑓)𝑖

38Algorithmic and advanced Programming in Python

Why correlated trees are not ideal ?

Assuming each tree has variance σ2

If simply identically distributed, then average variance is

As B → ∞, second term → 0

Thus, the pairwise correlation always affects the variance

39Algorithmic and advanced Programming in Python

Why correlated trees are not ideal ?

Assuming each tree has variance σ2

If simply identically distributed, then average variance is

As B → ∞, second term → 0

Thus, the pairwise correlation always affects the variance

40Algorithmic and advanced Programming in Python

Why correlated trees are not ideal ?

How to deal?

If we reduce m (the number of dimensions we
actually consider in each splitting),

then we reduce the pairwise tree correlation

Thus, variance will be reduced.

41Algorithmic and advanced Programming in Python

More about Random Forests

1 1 𝑛
𝑛

1. Construct subset 𝑥∗, 𝑦∗ , … , 𝑥∗ , 𝑦∗ by
sampling original training set with replacement.

2. Build tree-structured learners ℎ(𝑥, Θ𝑘), where
at each node, m predictors at random are
selected before finding the best split.
– Gini Criterion.
– No pruning.

3. Combine the predictions (average or majority
vote) to get the final result.

42Algorithmic and advanced Programming in Python

Random Forest

Greedy like Decision Tree
(e.g. GINI)

Multiple Tree Model
(s), i.e. space partition

Task

Representation

Score Function

Search/Optimization

Models,
Parameters

Classification /
Regression

multiple (almost) full decision
trees / bootstrap samples /
sample features

Split with Purity measure /
e.g. IG / cross-entropy / Gini
/

43Algorithmic and advanced Programming in Python

Let us discuss Boosting

44

• Bagging

• Bagged Decision Tree

• Random forests:

• Boosting

• Adaboost

• Xgboost

• Stacking

1. Have many rules (base classifiers) to vote on the decision
2. Sequentially train base classifiers that corrects mistakes of

previous → focus on hard examples
3. Give higher weight to better rules

Boosting Strategies

45Algorithmic and advanced Programming in Python

● Recognizing apples:
● (1) Collect a set of real apples and plastic apples
● (2) Observe some rules to tell them apart based on

their characteristics

46Algorithmic and advanced Programming in Python

1st Simple Rule

1. Have many rules (base classifiers) to vote on

the decision
2. Sequentially train base classifiers that corrects mistakes of

previous → focus on hard examples
3. Give higher weight to better rules

47Algorithmic and advanced Programming in Python

1. Have many rules (base classifiers) to vote on

the decision
2. Sequentially train base classifiers that corrects mistakes of

previous → focus on hard examples
3. Give higher weight to better rules

48Algorithmic and advanced Programming in Python

2nd Rule

1. Have many rules (base classifiers) to vote on

the decision

2. Sequentially train base classifiers that corrects mistakes of
previous → focus on hard examples

3. Give higher weight to better rules

49Algorithmic and advanced Programming in Python

1. Have many rules (base classifiers) to vote on

the decision
2. Sequentially train base classifiers that corrects mistakes of

previous → focus on hard examples
3. Give higher weight to better rules

50Algorithmic and advanced Programming in Python

3rd Rule

1. Have many rules (base classifiers) to vote on

the decision
2. Sequentially train base classifiers that corrects mistakes of

previous → focus on hard examples
3. Give higher weight to better rules

51Algorithmic and advanced Programming in Python

4th Rule

1. Have many rules (base classifiers) to vote on

the decision
2. Sequentially train base classifiers that corrects mistakes of

previous → focus on hard examples
3. Give higher weight to better rules

52Algorithmic and advanced Programming in Python

3rd

2nd

4th 1st

1. Have many rules (base classifiers) to vote on

the decision
2. Sequentially train base classifiers that corrects mistakes of

previous → focus on hard examples
3. Give higher weight to better rules

53Algorithmic and advanced Programming in Python

A More
Complex
Rule

1. Have many rules (base classifiers) to vote on

the decision
2. Sequentially train base classifiers that corrects mistakes of

previous → focus on hard examples
3. Give higher weight to better rules

54Algorithmic and advanced Programming in Python

Final Classifier is the additive combination of

base rules:

55Algorithmic and advanced Programming in Python

Final Classifier:

For t = 1 to T iterations:
Select a base classifier:

Set classifier weight:

Update example weight:

Training Data:

Set uniform example weight

Adaboost Algorithm (Proposed by Robert

Schapire)

56Algorithmic and advanced Programming in Python

Boosting vs. Bagging

● Similar to bagging, boosting combines a
weighted sum of many classifiers, thus it
reduces variance.

● One key difference: unlike bagging, boosting
fit the tree to the entire training set, and
adaptively weight the examples.

● Boosting tries to do better at each iteration,
(by making model a bit more complex), thus
it reduces bias. 57Algorithmic and advanced Programming in Python

XGBoost

• Additive tree model: add new trees that complement the already-built ones

• Response is the optimal linear combination of all decision trees

• Popular in Kaggle Competitions for efficiency and accuracy

Additive tree model

……..

Greedy Algorithm

Number of Tree

Error
More in 18c-
extraBoosting
Slides

58Algorithmic and advanced Programming in Python

XGBoost
• XGBoost is a very efficient Gradient Boosting Decision Tree implementation with some interesting

features:

• Regularization: Can use L1 or L2 regularization.

• Handling sparse data: Incorporates a sparsity-aware split finding algorithm to handle different
types

types
of sparsity patterns in the data.

• Weighted quantile sketch: Uses distributed weighted quantile sketch algorithm to
effectively handle weighted data.

• Block structure for parallel learning: Makes use of multiple cores on the CPU, possible because of a
block structure in its system design. Block structure enables the data layout to be reused.

• Cache awareness: Allocates internal buffers in each thread, where the gradient statistics can be
stored.

• Out-of-core computing: Optimizes the available disk space and maximizes its usage when handling
huge datasets that do not fit into memory.

59Algorithmic and advanced Programming in Python

More about History …

• Introduction of Adaboost:
– Freund; Schapire (1999). "A Short Introduction to Boosting“

• Multiclass/Regression
– Y.Freund, R. Schapire, “A Decision-Theoretic Generalization of on-Line

Learning and an Application to Boosting”, 1995.

– Robert E. Schapire and Yoram Singer. Improved boosting algorithms using
confidence-rated predictions. In Proceedings of the Eleventh Annual
Conference on Computational Learning Theory, pages 80–91, 1998.

• Gentle Boost
– Schapire, Robert; Singer, Yoram (1999). "Improved Boosting Algorithms Using

Confidence-rated Predictions".

60Algorithmic and advanced Programming in Python

LGBM

• Stands for Light Gradient Boosted Machines.
It is a library for training GBMs developed by
Microsoft, and it competes with XGBoost.

• Extremely efficient implementation.

• Usually much faster than XGBoost with low hit
on accuracy.

• Main contributions are two novel techniques
to speed up split analysis: Gradient based
one-side sampling and Exclusive Feature
Building.

• Leaf-wise tree growth vs level-wise tree
growth of XGBoost.

61Algorithmic and advanced Programming in Python

Dr. Yanjun Qi / UVA CS

10/21/20

From: François Chollet 2019

62Algorithmic and advanced Programming in Python

Boosting

Gradient based search of
weights / DT split

Exponential Loss

Multiple Trees + Tree
Weights

Task

Representation

Score Function

Search/Optimization

Models,
Parameters

Classification / Regression

Weighted sum of a series of
shallow decision trees

Data
Tabular

63Algorithmic and advanced Programming in Python

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Stacking

64

• Bagging

• Bagged Decision Tree

• Random forests

• Boosting

• Adaboost

• Xgboost

• Stacking

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

e.g. Ensembles in practice

Oct 2006 -
2009

Each rating/sample:
+ <user, movie, date of grade, grade>

Training set (100,480,507 ratings) Qualifying
set (2,817,131 ratings)➔winner

65

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Ensemble in practice

Team “Bellkor's Pragmatic Chaos” defeated the team “ensemble”

by submitting just 20 minutes earlier! 1 million dollar !

The ensemble team ➔ blenders of multiple different methods

66

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Stacking

Labeled
data

Final

prediction

• Main Idea: Learn and combine multiple classifiers

Train Test

Base learner C1

Base learner C2

……

Base learner Cn

Meta
Learner

67

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Generating Base and Meta Learners

• Base model—efficiency, accuracy and diversity
▪ Sampling training examples

▪ Sampling features

▪ Using different learning models

• Meta learner
▪ Majority voting

▪ Weighted averaging

▪ …..

▪ Higher level classifier — Supervised (e.g. Xgboost as blender)

Unsupervised

68

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

Training the base predictors

(Hold out for later)

69

Algorithmic and advanced Programming in Python

Training the meta blender

70

Algorithmic and advanced Programming in PythonAlgorithmic and advanced Programming in Python

In Lab session
You will see how to use XGBoost to do price prediction for houses in Boston
This can be useful for your FINAL project

Lab is done by Remy Belmonte

71

