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Outline
1. Introduction to Ensemble

2. Bagging

3. Boosting

4. Discussion around XGBoost and LightGBM
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Reminder of the objective of this course
• People often learn about data structures out of context
• But in this course you will learn foundational concepts by building a real 

application with python and Flask

• To learn the ins and outs of the essential data structure, experiencing in 
practice has proved to be a much more powerful way to learn data 
structures
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Reminder of previous session
In Master class 7, we discuss about graph traversal
Question: can you summarize the various algorithms seen?
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Three major sections for classification

• We can divide the large variety of classification
approaches into roughly three major types

1. Discriminative
directly estimate a decision rule/boundary
e.g., support vector machine, decision tree, logistic regression, 
e.g. neural networks (NN), deep NN

2. Generative:
build a generative statistical model
e.g., Bayesian networks, Naïve Bayes 
classifier

3. Instance based classifiers
- Use observation directly (no models)
- e.g. K nearest neighbors
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Ensemble methods principle
In statistics and machine learning, ensemble methods use 
- multiple learning algorithms 
- to obtain better predictive performance than could be obtained from 

any of the constituent learning algorithms alone.

Its core principle: Together is better than alone as the majority vote cannot 
go wrong. Averaging over multiple experts should give a better answer!
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Three major sections for classification

• We can divide the large variety of classification
approaches into roughly three major types

1. Discriminative
directly estimate a decision rule/boundary
e.g., support vector machine, decision tree, logistic regression, 
e.g. neural networks (NN), deep NN

2. Generative:
build a generative statistical model
e.g., Bayesian networks, Naïve Bayes classifier

3. Instance based classifiers
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Ensemble Core principles

• Framework of Ensemble:

– 1. Get a set of classifiers 𝑓1 𝑥 , 𝑓2 𝑥 , 𝑓3 𝑥 , ……

They should be diverse.

– 2. Aggregate the classifiers (properly)

How to have different training data sets
• Re-sampling your training data to form a new set

• Re-weighting your training data to form a new set
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The different type of Ensemble methods

• Bagging

• Bagged Decision Tree

• Random forests:

• Boosting

• Adaboost

• Xgboost

• Stacking
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Bagging

• Bagging or bootstrap aggregation

• a technique for reducing the variance of an 
estimated prediction function.

• For instance, for classification, a committee
of decision trees

• Each tree casts a vote for the predicted class.
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Bootstrap

The basic idea:

randomly draw datasets with replacement (i.e. allows duplicates) 
from the training data, each samples the same size as the original 
training set
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With Replacement

• Bootstrap with replacement can keep the 
sampling size the same as the original size for 
every repeated sampling. The sampled data 
groups are independent on each other.
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Or Without Replacement

• Bootstrap without replacement cannot keep the 
sampling size the same as the original size for 
every repeated sampling. The sampled data 
groups are dependent on each other.
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Bagging with simple graphs
N
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Create bootstrap samples 
from the training data

p features
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Bagging of DT Classifiers
N

ex
am

p
le

s

..
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…
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…

p

e.g.

Take the  
majority  

vote

i.e. Refit the model to 
each bootstrap 
dataset, and then 
examine the behavior 
over the B 
replications.
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E.g., Predict by Hard voting

base
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Decision Boundary Comparison
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Peculiarities of Bagging

• Model Instability is good when bagging

– The more variable (unstable) the basic model is, the more 
improvement can potentially be obtained

– Low-Variability methods (e.g. LDA) improve less than High-
Variability methods (e.g. decision trees)
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Bias-Variance Tradeoff / Model Selection

underfit region
overfit region

Large Bias 

Small Variance
Small Bias Large 
Variance
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A complex model
have large variance.

We can average 
complex models to 
reduce variance.

If we average all the 𝑓i, 
is it close to 𝑓∗

𝐸 𝑓" = 𝑓∗

𝑓2 𝑥 , 𝑓3 𝑥 , …… 𝑓𝐵 𝑥
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𝑓1 𝑥 ,classifiers

In details
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Base classifiers 𝑓1 𝑥 , 𝑓$ 𝑥 , 𝑓3 𝑥 , …… 𝑓𝐵 𝑥

𝑉𝑎𝑟(𝑓)) = 𝐸((𝑓) − 𝑓$
1

𝐵

1

𝐵
̅  2) = 𝑉𝑎𝑟( 2 𝑓)𝑖) = 2 2
𝑉𝑎𝑟 𝑓)𝑖

EXTRA
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Bagging : an extreme case study using  

simulated data (with correlated features)
N = 300 training samples,

Y: Two classes and X: p = 5 features,

Each feature N(0, 1) distribution and pairwise correlation .95 

Response Y: generated according to:

Test sample size of 2000

Fit classification trees to training set and bootstrap samples 

B = 200
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Notice the 
bootstrap 
trees look 
quite 
different 
from the 
original tree

Five features highly correlated 
with each other

➔ No clear difference with 
picking up which feature to
split

➔ Small
changes in the 
training set will result 
in different tree

➔ But these  trees are 
actually quite similar wrt 
output classification
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Consensus: Majority vote

Probability: Average distribution at terminal nodes

B

For B>30, more trees  do not improve the  bagging results

➔ Since the trees  
correlate highly to 
each other and give 
similar classifications
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Bagging

• Slightly increases model complexity
– Cannot help when greater enlargement of 

model diversity is needed

• Bagged trees are correlated
– Use random forest to reduce correlation 

between trees
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Bagged Decision Tree

Greedy like Decision Tree 
(e.g. GINI)

Split with Purity measure /
e.g. IG / cross-entropy / Gini
/

Multiple Tree Model 
(s), i.e. space partition

Task

Representation

Score Function

Search/Optimization

Models, 
Parameters

Classification / Regression

multiple (almost) full 
decision trees / 
bootstrap samples

Data
Tabular
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Let us discuss random forest

27

• Bagging

• Bagged Decision Tree

• Random forests

• Boosting

• Adaboost

• Xgboost

• Stacking
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Random forest classifier

• Random forest classifier,

– an extension to bagging

– which uses de-correlated trees.
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Random Forest Classifier
N

ex
am

p
le

s
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..

…

Create bootstrap samples 
from the training data

p features
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Random Forest Classifier
N

ex
am

p
le

s

..
..

…

p features

At each node when choosing the split feature 
choose only among m<p features
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Random Forest Classifier
Create decision tree 

from each bootstrap sample

N
ex

am
p

le
s

..
..

…

..
..

…

p features
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Random Forest Classifier
N

ex
am

p
le

s

..
..

…

..
..

…

Take he 
majority  

vote

p features
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Random Forests

For each of our B bootstrap samples

Form a tree in the following manner

i: Given p dimensions, pick m of them

ii: Split only according to these m dimensions
(we will NOT consider the other p-m dimensions)

Repeat the above steps i & ii for each split

Note: we pick a different set of m dimensions for each split 
on a single tree
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Page 598-599 In ESL book
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Random Forests

Random forest can be viewed as a refinement of bagging with a 
tweak of decorrelating the trees:

At each tree split, a random subset of m features out of all p
features is drawn to be considered for splitting

Some guidelines provided by Breiman, but be careful to choose 
m based on specific problem:

m = p amounts to bagging

m = p/3 or log2(p) for regression 

m = sqrt(p) for classification
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Why correlated trees are not ideal ?

Random Forests try to reduce correlation 
between the trees.

Why?
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Why correlated trees are not ideal ?

Assuming each tree has variance σ2

If trees are independently identically 
distributed, then average variance is σ2/B
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A complex model will 
have large variance.

We can average 
complex models to 
reduce variance.

If we average all the 𝑓i, 
is it close to 𝑓∗

𝐸 𝑓" = 𝑓∗

classifiers 𝑓1 𝑥 , 𝑓$ 𝑥 , 𝑓3 𝑥 , …… 𝑓𝐵 𝑥

𝑉𝑎𝑟(𝑓)) = 𝐸((𝑓)− 𝑓$
1

𝐵

1

𝐵
̅  2) = 𝑉𝑎𝑟( 2 𝑓)𝑖) = 2 2
𝑉𝑎𝑟 𝑓)𝑖
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Why correlated trees are not ideal ?

Assuming each tree has variance σ2

If simply identically distributed, then average variance is

As B → ∞, second term → 0

Thus, the pairwise correlation always affects the variance
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Why correlated trees are not ideal ?

Assuming each tree has variance σ2

If simply identically distributed, then average variance is

As B → ∞, second term → 0

Thus, the pairwise correlation always affects the variance
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Why correlated trees are not ideal ?

How to deal?

If we reduce m (the number of dimensions we 
actually consider in each splitting ),

then we reduce the pairwise tree correlation

Thus, variance will be reduced.
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More about Random Forests

1 1 𝑛
𝑛

1. Construct subset 𝑥∗, 𝑦∗ , … , 𝑥∗ , 𝑦∗ by
sampling original training set with replacement.

2. Build tree-structured learners ℎ(𝑥, Θ𝑘 ), where  
at each node, m predictors at random are 
selected before finding the best split.
– Gini Criterion.
– No pruning.

3. Combine the predictions (average or majority 
vote) to get the final result.
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Random Forest

Greedy like Decision Tree 
(e.g. GINI)

Multiple Tree Model 
(s), i.e. space partition

Task

Representation

Score Function

Search/Optimization

Models, 
Parameters

Classification / 
Regression

multiple (almost) full decision 
trees / bootstrap samples / 
sample features

Split with Purity measure /
e.g. IG / cross-entropy / Gini
/
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Let us discuss Boosting

44

• Bagging

• Bagged Decision Tree

• Random forests:

• Boosting

• Adaboost

• Xgboost

• Stacking



1. Have many rules (base classifiers) to vote on the decision
2. Sequentially train base classifiers that corrects mistakes of 

previous → focus on hard examples
3. Give higher weight to better rules

Boosting Strategies
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● Recognizing apples:
● (1) Collect a set of real apples and plastic apples
● (2) Observe some rules to tell them apart based on 

their characteristics
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1st Simple Rule

1. Have many rules (base classifiers) to vote on 

the decision
2. Sequentially train base classifiers that corrects mistakes of 

previous → focus on hard examples
3. Give higher weight to better rules
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1. Have many rules (base classifiers) to vote on 

the decision
2. Sequentially train base classifiers that corrects mistakes of 

previous → focus on hard examples
3. Give higher weight to better rules
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2nd Rule

1. Have many rules (base classifiers) to vote on 

the decision

2. Sequentially train base classifiers that corrects mistakes of 
previous → focus on hard examples

3. Give higher weight to better rules
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1. Have many rules (base classifiers) to vote on 

the decision
2. Sequentially train base classifiers that corrects mistakes of 

previous → focus on hard examples
3. Give higher weight to better rules
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3rd Rule

1. Have many rules (base classifiers) to vote on 

the decision
2. Sequentially train base classifiers that corrects mistakes of 

previous → focus on hard examples
3. Give higher weight to better rules
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4th Rule

1. Have many rules (base classifiers) to vote on 

the decision
2. Sequentially train base classifiers that corrects mistakes of 

previous → focus on hard examples
3. Give higher weight to better rules
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3rd

2nd

4th 1st

1. Have many rules (base classifiers) to vote on 

the decision
2. Sequentially train base classifiers that corrects mistakes of 

previous → focus on hard examples
3. Give higher weight to better rules
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A More 
Complex  
Rule

1. Have many rules (base classifiers) to vote on 

the decision
2. Sequentially train base classifiers that corrects mistakes of 

previous → focus on hard examples
3. Give higher weight to better rules
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Final Classifier is the additive combination of 

base rules:
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Final Classifier:

For t = 1 to T iterations:
Select a base classifier:

Set classifier weight: 

Update example weight:

Training Data:

Set uniform example weight

Adaboost Algorithm (Proposed by Robert 

Schapire)
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Boosting vs. Bagging

● Similar to bagging, boosting combines a 
weighted sum of many classifiers, thus it 
reduces variance.

● One key difference: unlike bagging, boosting 
fit the tree to the entire training set, and 
adaptively weight the examples.

● Boosting tries to do better at each iteration, 
(by making model a bit more complex), thus  
it reduces bias. 57Algorithmic and advanced Programming in Python



XGBoost

• Additive tree model: add new trees that complement the already-built ones

• Response is the optimal linear combination of all decision trees

• Popular in Kaggle Competitions for efficiency and accuracy

Additive tree model

……..

Greedy Algorithm

Number of Tree

Error
More in 18c-
extraBoosting  
Slides
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XGBoost
• XGBoost is a very efficient Gradient Boosting Decision Tree implementation with some interesting 

features:

• Regularization: Can use L1 or L2 regularization.

• Handling sparse data: Incorporates a sparsity-aware split finding algorithm to handle different
types

types
of sparsity patterns in the data.

• Weighted quantile sketch: Uses distributed weighted quantile sketch algorithm to 
effectively handle weighted data.

• Block structure for parallel learning: Makes use of multiple cores on the CPU, possible because of a
block structure in its system design. Block structure enables the data layout to be reused.

• Cache awareness: Allocates internal buffers in each thread, where the gradient statistics can be
stored.

• Out-of-core computing: Optimizes the available disk space and maximizes its usage when handling
huge datasets that do not fit into memory.
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More about History …

• Introduction of Adaboost:
– Freund; Schapire (1999). "A Short Introduction to Boosting“

• Multiclass/Regression
– Y.Freund, R. Schapire, “A Decision-Theoretic Generalization of on-Line 

Learning and an Application to Boosting”, 1995.

– Robert E. Schapire and Yoram Singer. Improved boosting algorithms using 
confidence-rated predictions. In Proceedings of the Eleventh Annual 
Conference on Computational Learning Theory, pages 80–91, 1998.

• Gentle Boost
– Schapire, Robert; Singer, Yoram (1999). "Improved Boosting Algorithms Using 

Confidence-rated Predictions".
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LGBM

• Stands for Light Gradient Boosted Machines.
It is a library for training GBMs developed by
Microsoft, and it competes with XGBoost.

• Extremely efficient implementation.

• Usually much faster than XGBoost with low hit 
on accuracy.

• Main contributions are two novel techniques 
to speed up split analysis: Gradient based 
one-side sampling and Exclusive Feature 
Building.

• Leaf-wise tree growth vs level-wise tree 
growth of XGBoost.
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Dr. Yanjun Qi / UVA CS

10/21/20

From: François Chollet 2019
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Boosting

Gradient based search of 
weights / DT split

Exponential Loss

Multiple Trees + Tree 
Weights

Task

Representation

Score Function

Search/Optimization

Models, 
Parameters

Classification / Regression

Weighted sum of a series of 
shallow decision trees

Data
Tabular
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Stacking

64

• Bagging

• Bagged Decision Tree

• Random forests

• Boosting

• Adaboost

• Xgboost

• Stacking
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e.g. Ensembles in practice

Oct 2006 -
2009

Each rating/sample:
+ <user, movie, date of grade, grade>

Training set (100,480,507 ratings) Qualifying 
set (2,817,131 ratings)➔winner
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Ensemble in practice

Team “Bellkor's Pragmatic  Chaos” defeated the team  “ensemble” 

by submitting  just 20 minutes earlier!  1 million dollar !

The ensemble team ➔ blenders of multiple different methods
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Stacking

Labeled  
data

Final 

prediction

• Main Idea: Learn and combine multiple classifiers

Train Test

Base learner C1

Base learner C2

……

Base learner Cn

Meta 
Learner
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Generating Base and Meta Learners

• Base model—efficiency, accuracy and diversity
▪ Sampling training examples

▪ Sampling features

▪ Using different learning models

• Meta learner
▪ Majority voting

▪ Weighted averaging

▪ …..

▪ Higher level classifier — Supervised (e.g. Xgboost as blender)

Unsupervised
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Training the base predictors

(Hold out for later)

69



Algorithmic and advanced Programming in Python

Training the meta  blender
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In Lab session
You will see how to use XGBoost to do price prediction for houses in Boston
This can be useful for your FINAL project

Lab is done by Remy Belmonte
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